

5 D 5

The definitive infrared thermal imaging system for steel slag monitoring

The definitive infrared thermal imaging system for steel slag monitoring

THE PROBLEM

When liquid steel is tapped from a basic oxygen or electric arc furnace, it is essential to minimise the quantity of slag carried over into the ladle.

In the past this has been done by visual observation of the tapping stream or by the use of electromagnetic induction coils mounted onto the furnace. However, neither of these methods has proved to be entirely reliable.

PROBLEMS OF SLAG CARRY-OVER

- Slag layer hinders addition of alloys and conditioners
- High levels of FeO and MnO results in high oxygen content of steel leading to increased processing time and treatment costs
- High inclusion formation, steel cleanliness problems and increased risk of nozzle clogging in the caster
- Phosphorous reversion in the ladle
- Poor ladle desulphurisation
- Ladle refractory wear

THE SOLUTION

The new LAND thermal imaging Slag Detection System SDS has been developed using Land's expert knowledge of the application and over 58 years of experience in the steel industry to monitor and aid control of slag carry-over from one process to another.

The SDS system is specially designed to withstand the harsh conditions of continuous operation in the steel plant, with minimum maintenance required. The industrial thermal imaging sensor is housed in a rugged water-cooled and air purged enclosure, continuously viewing the tapping area. As the tap commences, the dedicated LIPS SDS software automatically begins to record the tap as well as producing a data log and graph of the relevant steel/slag data.

When the level of the slag reaches the predetermined level an alarm is generated to stop the tap. The recording will end and the files saved by tap number. Full access of the tapping data is available to the operator for quality control purposes.

Rugged SDS thermal imaging sensor using the latest focal plane array detector

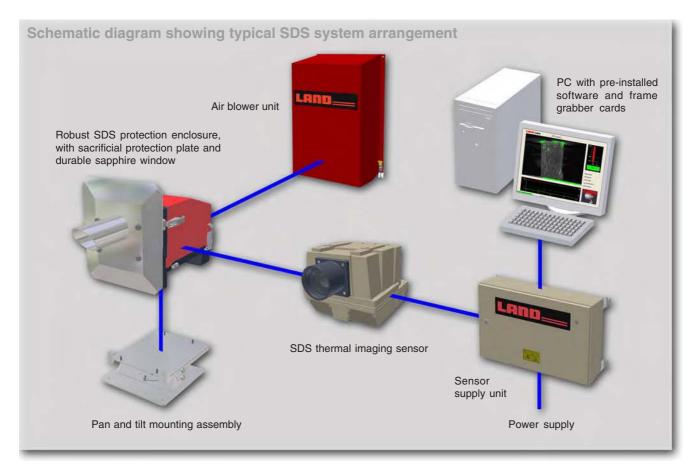
BENEFITS OF THE SLAG DETECTION SYSTEM

- Automatic operation
- Enhanced data output for tap analysis
- Accurate detection independent of charge weight
- Reliable alarm independent of operator
- Improved yield
- Lower slag content improving steel quality
- Lower maintenance on BOF/ EAF vessel
- Reduced energy costs

The SDS display allows users to observe critical tap information such as the live thermal image, steel and slag percentages, time versus percentage graph, alarm level and alarm status



PROTECTIVE ENCLOSURE


Rugged water-cooled enclosure with an integral air purge, sacrificial protection plate, water cooling and adjustable mounting bracket, supplied as a complete assembly for ease of installation.

FEATURES

- The sacrificial protection plate and sighting tube, available as a spare part, is supplied to protect the main enclosure from direct impact of liquid metal.
- All electrical, water and air services, and system signal connections are located at the rear of the enclosure for added protection.
- The sighting tube also significantly reduces the risk of direct impact of liquid steel against the sapphire window which protects the imaging sensor.
- The imager can be removed from the enclosure without the need of tools.
- The housing is supplied with one cable for serial communications, video and power supply, protected by conduit supplied as standard to provide further protection.
- Once mounted to the steel plant, the adjustable bracket allows both pan and tilt movement to precisely align the imaging sensor to the tapping stream.

Robust housing assembly complete with durable sapphire protection window, pan and tilt mounting, air purging and water cooling services

505

New powerful thermal imaging slag detection software system

This comprehensive, fully featured software system has been developed to provide the steel plant engineers and managers with the tools to develop and improve the transfer of steel from one process to another.

SDS offers the steel plant a number of interconnectivity methods for on-line control and, more importantly, it automatically records the tap data in three forms for post analysis and future process improvement.

In addition to this, the image processing system has been pre-installed and configured to work straight out of the box – minimum set-up is required. Once the system hardware is installed onto the steel plant, the moment the system is

turned on, the steel plant can immediately begin to reduce slag carryover. No other thermal slag detection system currently available offers these features.

Pre-installed on the powerful image processing system, the display allows users to observe critical tap information such as the live thermal image, steel and slag percentages, time versus percentage graph, alarm level and alarm status.

Secondary information such as tap number, sensor temperature, comms status, tap duration, steel / slag ratio and record status are less prominent so as to not distract the user during the tap.

LAND sos

BOF Vessel 1

Full Screen Display

Allows users to observe the critical live tap information.

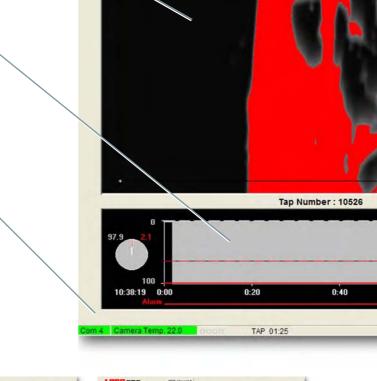
The three main display screens show the live thermal image, alarm level window and display graphs.

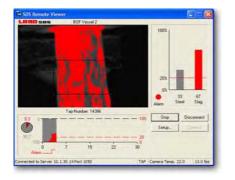
Also on screen are the location identifier, tap number, system status bar and an area for the plant logo.

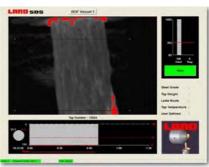
Display Graphs

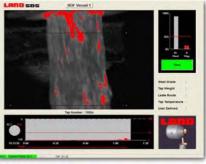
A bar or line graph displays the steel and slag percentage versus time. A pie chart illustrates the total steel slag pixels during each tap, this is extremely useful when comparing taps. This screen also shows alarm condition status.

This information, along with the thermal video and all text data, is automatically recorded as soon as the tap commences.


System Status Bar


Displaying communication status, imager temperature status, tap duration and Ethernet connections.


Remote Viewer


Up to 4 remote connections allow viewing of live tap information to be viewed anywhere on the plant network.

Remove Viewer screen shown below

Up to four users can also view remotely a condensed view of the live tap anywhere on the plant network by using the remote viewer software.

At the end of the tap the video, text data and graph are saved by tap number for later analysis and can be automatically deleted after a user defined number of days.

Inputs and outputs from the steel plant and slag detection system include: digital output, DDE, OLE, Ethernet and OPC.

Connecting the image processing system to the plant network via either OPC or Ethernet protocols allows live data transfer to and from the slag detection system to improve the steel transfer process.

Data to the slag detection system includes tap number, alarm level and five unique variables specified by the steel plant such as charge-number, heat-number, steel grade and tap temperature. When used, these data are recorded in the saved text data file.

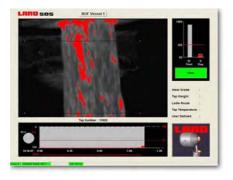
Data output from the system can be transmitted at the equivalent of 25 frames per second.

This information includes steel slag percentage, alarm status, sensor temp and communications status.

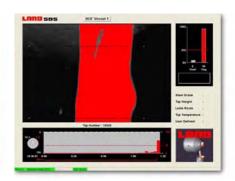
Alarm Level Window

- Steel and slag percentages
- Alarm level
- Alarm status
- Steel, slag alarm percentage, steel/slag alarm status, available via OPC and Ethernet connection. Values can be transferred to SDS from the steel plant via OPC or Ethernet.

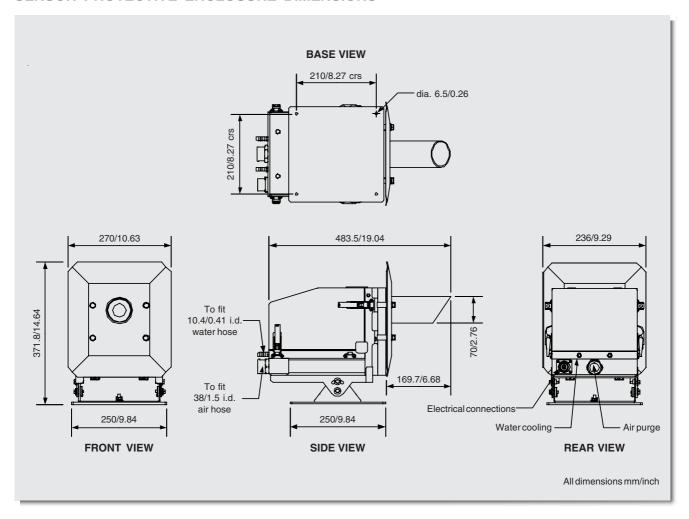
User Defined Variables

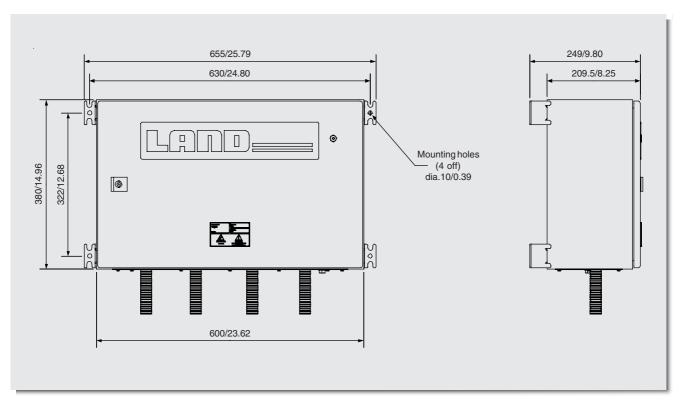

Any five user defined variables can be chosen with corresponding values altering as determined by the steel plant.

This information is included in the auto record data for each tap.


Language

All text displayed on the full screen can be user configured to suit the required language.





SENSOR PROTECTIVE ENCLOSURE DIMENSIONS

SENSOR SUPPLY UNIT DIMENSIONS

TYPICAL SYSTEM

- Pre-configured image processing system
- Serial communications and video cable set pre-wired and labelled to suit plant
- O Power, communications and video connection service panel mounted up to 10m from the sensor enclosure
- Pre-wired 10m cable and conduit supporting serial communications, video and power connections
- Rugged water-cooled enclosure with an integral air purge and adjustable bracket
- High-resolution FPA thermal imaging sensor and integrated telephoto lens
- Optional air purge blower unit and hose mounted up to 30m from the sensor enclosure

OUTLINE SPECIFICATIONS

Image Processing System

Slag detection: Alarm activation when a preset percentage of either slag or steel detected

within defined window

User display: Front page information display, plant logo and location identifier

Frame rate: 25 frames/sec

Automatic functions: Auto tap detection, steel/slag ratio, video file, log file of all data, steel/slag

percentage graph, all saved as tap number.

Language: User defined

Outputs: Digital output card, DDE, OLE, Ethernet and OPC Options

Sensor Supply Unit

Functions: Local connection interface between imaging sensor and image processing

system

Cables: 30/150/300m pre-wired and labeled, greater distances to 1km are available

Enclosure

Service: Water, air, power input, communications, video, located to the rear

of the enclosure

Added Protection: Sacrificial plate protects the main enclosure from direct impact

Sighting tube: Design significantly reduces the risk of direct impact of liquid steel against

the field replaceable sapphire window

Air bleed: Provides positive pressure within the enclosure

Environmental rating IP65

Thermal Imaging Sensor

Temperature measurement range: 600 to 2000°C
Thermal image resolution: 320 x 240 pixels

Detector: Microbolometer, focal plane array

Wavelength: $3.9\mu m$ Field of view: $6^{\circ} \times 4.5^{\circ}$ Motorised focusing range: 3m to infinity

Options

Blower unit, setup monitor, sensor carry case

For further information please contact the appropriate office or visit our web site at: www.landinst.com

Land Instruments International Infrared Temperature Measurement

Dronfield S18 1DJ, England Telephone: (01246) 417691 Facsimile: (01246) 410585 Email:infrared.sales@landinst.com Internet: www.landinst.com

Land Instruments Sarl Infrared Temperature Measurement

7 Parc des Fontenelles 78870 Bailly, France Téléphone: (1) 34 62 05 45 Télécopie: (1) 30 56 51 12 Email: commercial@landinst.fr Internet: www.landinst.fr

Land Instruments GmbH

Infrared Temperature Measurement

Fixheider Str. 6

51381 Leverkusen, Germany Telefon: 02171/7673-0 Telefax: 02171/7673-9 Email: infrarot@landinst.de Internet: www.landinst.de

Land Instruments Srl

Infrared Temperature Measurement

Via dell'Industria, 2 20037 Paderno Dugnano,

Milano, Italy

Telefono: 02/99040423 Telefax: 02/99040418 Email: info@landinst.it Internet: www.landinst.it

Land Instruments Ltd

31-27 Toyotsuchou, Suita Osaka 564-0051, Japan Telephone: 06 6330 5153 Facsimile: 06 6330 5338 Email: info@landinst.jp Internet: www.landinst.jp

Land Instruments International

Av. Horacio 1132 Planta Baja "B" Col. Polanco 11550 Mexico, D.F.

Telephone: 52 55 5281 1165 Facsimile: 52 55 5281 5364 Email: ventas@landinstruments.net Internet: www.landinstruments.net

Land Instruments International Infrared Temperature Measurement

Chile, 10-Edificio Madrid 92 28290 Las Matas, Madrid, Spain Telephone: 91 630 0791

Facsimile: 91 630 2918

 ${\it Email: land-infrared@landinst.es}$

Land Instruments International Infrared Temperature Measurement

10 Friends Lane Newtown, PA 18940-

Newtown, PA 18940-1804, USA Telephone: (215) 504-8000 Facsimile: (215) 504-0879 Email: irsales@landinstruments.net

Internet: www.landinstruments.net

Distributor:

Applies to the UK

Applies to the USA